THERMOELASTIC STRESSES IN A LONG CYLINDER
FOR THE CASE OF TRANSFER OF HEAT BETWEEN
THE SURFACE AND AN EXTERNAL MEDIUM WITH
VARIABLE TEMPERATURE

P. Z. Livshits UDC 539.30:536.248

We examine a three-dimensional thermoelasticity problem for an isotropic circular cylin-
der. For a specified discontinuous temperature field the solution is derived in a form
effective for numerical calculations.

As is well known, the solution of a steady-state nonaxisymmetric thermoelasticity problem (without
consideration of mass forces and in the absence of heat sources) reduces to the integration of the basic sys-
tem of equations (1), i.e.,

viu -+

graddive = 20+ a.gradT, v°T =0. (1)
1 —2v 1—2v

The sought solution satisfying (1) and set by the boundary conditions can be given in the form of the sum of
the particular solutions for 1) and for the general solution ofﬁ(e), chosen [1, 2] in the form

uf® =0, ul =0, ul® = 2(1 +v) o 5 T{r ¢ 2)dz (V?ul=0), v 2)
u(e)=r_a_2_le ,6_72 L QX_S, u(e)zi ﬂ&_v%,
r 02 or r dp ® r 0¢ or
o, O, O
ue) = —p A A y) M A2

‘ or 0z (= 0z * 8z

v, =0 (k=1, 2, 3). 3)
The components of the stress tensor ojj are determined [3] from the formulas of Hooke's law
E i oy .

o = s {ai,- + - vo-—(1 4+ v) ;T 6[,-} (@ i=r o 2. “)

Thus, according to (2), we find U<itj)’ while in accordance with (3), (for T = 0) we also calculate U(i?)

o) =ol) = — o) = — o, ET,
o) = a1Ei Tdz, o®)= _‘E_E_ i Tdz. ®)
rz ar Pz r Oq)

Let us consider the case involving the distribution of the temperature T, of the external medium, in
which the heating conditions (T, > T) at the side surface of the cylinder (r = @) have the form
1 oT
— — +T=Ty Tm:{
h, Or
In dimensionless coordinates p and ¢ the solution for the heat~conduction equation satisfying boundary

conditions (6) can be written in the form of the Fourier integral

T, cos n when |2 << ¢,

0 when |2 > c. )
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TABLE 1. Values of U(p/ [oE T]cos ny at the Surface (p = 1)

of the Cylinder in the Middle (¢ = 0) of the Heating Segment for
Various Conditions of Heat Transfer with the Ambient Medium

Bi n b=0,1 b=0,3 5=0,5 b=1,0
0 —0,046 —0,084 —0,082 —0,050
1 1 —0,080 ~0,090 —0,072 —0,030
2 —0,072 —0,072 —0,048 —0,016
0 —0,094 —0,142 —0,122 —0,060
2 1 —0,126 —0,134 —0,102 —0,040
2 —0,136 —0,118 —0,080 —0,024
0 —0,220 —0,236 —0,180 —0,064
5 1 —0,244 —0,214 0,148 -—0,046
2 —0,246 —0,192 —0,118 —0,030
0 —0,458 —0,350 - —0,228 —0,066
10 1 —0,332 —0,260 —0,166 —0,046
2 —0,342 —0,236 —0,138 —0,034
0 —0,644 —0,400 —0,240 —0,062
100 1 —0,560 —0,314 —0,174 —0,046
2 —0,616 —0,306 —0,160 —0,038

]

T, 9 L) = Tnl oS 1Y g 1, (Bp) sin fb cos g
n
0

A, (B)

dﬁr

An®) =1, @)+ 22O

For the solution of the equations of elasticity theory (i.e., (1) for T = 0) we choose the functions

Xk(ps @, ¢) in (3) as follows:

@

%3 nE sin Cc

/

(Xp Xz\) _ 2(+w) o (COS ncp) j‘(/l, B) 1. (Bo) sinﬁbﬁcosﬁ(: a8,

(8)

where A(3), B(8), and C(8) are determined from the condition that there are no total (O‘(t) + U(e)) stresses

Irrs Oryr Org (subsequently denoted, respectively, as o, Toz Tpo
der.

) on the p =1 side surface of the cylin-

Satisfaction of these boundary conditions (in conjunction with (7) and (5)) leads to a system of linear

equations, whose expanded matrix has the form (8 = 6, = [oztETn])

B [— (=21 —Bl'], [(B*+ ) —BI'], n(pl'—1),
ry Ny —WBI'|, —8r L
Mﬁ )20 v)ﬁl], I’ L,
nﬁz e ! /~ .—;B-i B
| 5 I, n(d —pl), Bl ( : +n2) I,
Considering (3)-(5), (7), and (8), and introducing the notations Fg’}) L, B), F%?) (p, B) N
F{O = F® — _ Fit) = B poy _1_@92_,
o ® BA (B)
Fit) — I (59) ,
BA(B)
FO = w1 F‘z’} 1 _ RO ple
" [ VT Y R e

o

A(B)
o

A (B)

0

=1, 2, ...

(10)

(11)

we find the solution for the thermoelasticity problem in the form of the following integrals, e.g., (N = 1 and

N = 4):
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W _2( .
Bcosng  m S‘Fi(P’ B) sin B6 cos BT dp,
0 N
" o
w2 o
\6cos_ncp n S‘ F,(p, B) sin pb sin Bz dp.

In (11) the functions F%n) (m = 1, 2) have the form, e.g., for N =1,

m _ 14 82— (1-—2v/7 — Bol’ + B f2_ ___ﬁ_ 4

PP = {4,8° [~ (1 =291 60) — ol" (o) <[+ 5] 160 £ I(BP)]

+C,| - (pr (pp) — LBO) L a8, f) 13)
{p (prr e — 23 N we =t ne AR 1

A (B)s Bm(ﬁ), and Cm(,B) are algebraic complements of the elements in the m-th row of the determinant
A(B) = DHy(P) of the system (see (9)).

Integrals such as (12) are calculated on the basis of the Cauchy theorem by summation of the residues
of the functions Fn(os Blexp (i) (A > 0) over all the poles BS in the upper half plane s N =1, 2, 3, 6)
-i— S Fy (o, B)sinprdp = res,, (0) + 2 2 ([res F, (ps i,)] exp(—,3)
4]

s=l

- [res Fy (e, ias)] exp(—ah) + 2 Re [res Fy(ps Bexp(iy,M)] exp(— 8,M}, (14)
res F (p, §) =él_f§ B—B)F, (0, B A=b+1L b1 (15)

Bg = B, = *ing are the roots of the equation A (B) =0 (7); By =B tiog, By = Bpg = = vg * 64 are the

ns
roots of Eq. (16), i.e.,

A, (B) =g, (B) = 0. (16)

The expressions for the siresses in (12), according to formulas such as (14), can now be presented in the
following manner:

o, = 8Qt cos ny, 6, = o+ 095 cos np, Ty = 8QE sin ne, an

(3 t t .
0y =0Qy c0s np, Ty, = 8Q4 cos NP, Ty, = O sinng,

where the quantity O‘OZ (corresponding to the solution obtained as § — 0 in the temperature distribution (7)) is
equal to zero forn = 0 and n = i, * while forn = 2:

@ 1 T<d,
0 0
0 _ 8p™j, = _2—5 sin pb cos BL dg= 1172t =0 (18)
€Oos ne [1+n (B n 5 g 0 >0

Thus if in this case b— = (i.e., the temperature T, of the medium is constant over the entire length of the
generatrix), formulas (17)¥ (for ¢ > b) in the case of n = 0 and n = 1 characterize the plane stressed state
(when in an unattached solid cylinder, as is well known, no stresses arise), while for n = 2 they charac-
terize the state of plane deformation.

In (17) the term Q&(p, f), which makes provision for the local nature of the heating, i.e., Egs. (6),

for N=1, 2, 3, 6 is the following (¢ = 0):

v D= {[res Fyy(py )] [e7 s 4 g st

s==1

+ [res Py (p, i)} [ €% 4 e V] 9 Re[res P, (p, B)][ €P“H) feel0= 0] } . (19)

*Since the cylinder is not attached, the pure bending stresses produced by a moment are eliminated from
the consideration, beginning with (8) (for n = 1).
+We note that the axial force and the bending moment at any section ¢ of the cylinder is equal tfo zero.
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The multiplier ¢ in (19) assumes the following values:
8=1whenf<h, e6=0whenf=b &=—1when>b, (20)

while the quantities in the brackets, according to (15), (11), and (19), for example, when N = 1, have the
form

: 1
Filpy ing)] = {—— [! — BI(B) PV -1 () F® , 1)
[res £y (p. )] { s 9B ® P )] ]}ﬁ=ms
[res P,y (o, ia,)] = [Haas) %L} ,
[res Fy(p, B,)] = [H((ss) G_i;p—({g%—)] o

In (22), on the basis of (15), (16), (13), and (11), we have used the notation U(;) b, iag) = 0, (0, iag), U(;)(P,

Bg) = Up(p, Bg)s . . ., and
1
AB)

which accounts for the proportionality of the algebraic complements of the line elements of the determinant
A(B) in (16) with the following values for its roots:

when § = ia, 6 =f; =¥, + iﬁs’ (23)

H@By=[1(®)+ il (B (B)]

Az(ﬁ)zBZ(ﬁ):Cz(B):_ﬁ_h whenf =io, B=p, =vy —'[-L'(Ss‘ 4
4B B P vrenb=ine ==y, 24

For N = 4.5 we have ¢ = —1 in (19), while quantities similar to (21) and (22} should be replaced by
corresponding terms, multiplied by (— i), so that, for example,

[(~ DresF, (p, 'iws)] =(—i{- '}ﬁ:i%s’

I3 . . pz( ’ 1 S)
[(— 1) res P, (p, day)] — {Haas) %} . (25)

As an example of the calculation, let us calculate the values of the stresses oy and g, which arise in
the middle (z = 0) of the (~c, c) segment of the side surface of a cylinder that is free of constraints and is
heated by the medium: when r = g

oT

=h (T —T), Ty= Ty +Ticosg, |z <c,
ar T m ’ m

0 2 >c,

if we assume the length of the heating segment 2¢ = 0.54, aund that the value of the Biot number is given by
Bi= dht = 2.

(26)

On the strength of (17), (19), and (20), for the circumferential stresses 0 (N = 2) when p = 1 and
§=0

2 =NV (1, in)] exp(—xd) + [ry(1, o) exp(—ob) + 2 Re [ry(1, B exp (B,6)]} @7)
28, cos ng s

with the values of the roots w.g and Bos: ™ a1g> Bis needed for the calculations (with v = 0.25) contained, re-
spectively, in [4, 5, 6], while the roots of wgq and the multipliers [ry(1, B)] for g = ing, iag, and fghavebeen
tabulated by us for various values of Bi.

To illustrate the nature of the convergence of the residue series (27), we present the terms retained
in the summation (for n = 0 and u = 1 where it is specified that b = 0.25):

(20, 0y = {[— 0.082 + 0+ 2 (— 0.011)] - [0.027 + 0= 0] - [0.005 + 0 + O]} = — 0.072,
(26, cos ] 6, = {[— 1.645 -+ 1.560 + 2 (— 0.001)] -+ [0.012 -+ 0.001] -+ [0.003]} = — 0.071.
The axial stresses g, (N = 3) are calculated in similar fashion:

[20,] %o, = 0.034, {20, cos ¢] 6, = 0.031.

*Here, when n = 0, there is no twisting, since the problem of twisting (with the characteristic roots of a;g)
is completely distinct from the problem under consideration.
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When T; = T, we finally obtain in (26)

0, = 6,[— 0.144 — 0.142 cos ¢}, 0, = 0,[0.068 -- 0.062 cos ¢}.

Thus, in the analyzed case of local heating (26), extremely substantial compressive stresses 0y are
developed at the surface of the unattached solid cylinder, and there are tensile stresses o, approximately
half as great (when the heating is uniform over the entire length of the cylinder generatrix, these stresses

are equal to zero).

Table 1 gives the values of the stresses o, arising about the perimeter of the lateral cross sec-
tion z = 0 of the cylinder in the case of local heating (6) when the temperature of the medium is constant

about the perimeter (n = 0) and when it is variable (n = 1) and n = 2).

In the calculations involving (27) we

considered various combinations of the relative heating-segment length (2b) and the surface heat-transfer
conditions (the values of the Bi number), and for n = 2 we used the values found (when v = 0.25) for the roots
of the equation A,(8) = 0 (16):

ay = 4.089, a, = 8,114, 0, = 11.425;
By = 0,959 -+ 2.104i, B, = 1.613 + 5.681i, B, ~ 1.842 + 9,033,

From solution (17) we turn to the solution for the case of concentrated heating about the circumference

(at the section ¢ = 0):

when p =1 im26T, = Tha?* (26— 0, T,— o), (28)

where T} is the temperature per unit length of cylinder circumference.

The limit passage in (19) (for ¢ > b) leads to the following expressions for the functions w%(p, ¢) for

N=1, 2, 3, 6:

+ [—a,res Fy (o, ia)] exp(—al) +2Re[iB,resFy (o, BJexp (8],

©

m}i] (P, C) 22 { ['_ Ky TES FN (p’ l‘”s)] €Xp (— Msc) +

s=1

(29)

while for N = 4.5 they are similar in form (see (21)-(22) and (25)).

The expressions for the stresses in the case of concentrated (28) heating (6) can now be written, for

example, as (6* = 6% =

[ETED:
Op _ ot a9, __ .t Po, _ ot
ge. = @jcosng, —F = 0fcosng, o ot sinng. (30)

On the basis of the principle of superposition, we can extend these results to the case in which a seg-
ment of the side surface of the cylinder is heated in accordance with any law such that T, = T (@, ¢, z).

ve= 9 /or +(1/r)8 /or
+ (1/cHa% /o ¢? + 87 /822
U

T =T(r, ¢, z)

v

at

E

d = dup/Or + up/r

+ (1/r)8u¢/8g0 + 0u,/0z
&j

‘Sij

a

p=r/a and £=2z/a
b=c/a

hy

aht = Bi

In(x) =land I (x) = I
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NOTATION

is the Laplace operator in a cylindrical coordinate system r, ¢, z;
is the displacement vector;

is the temperature at a point on the elastic cylinder;

is the Poisson coefficient;

is the coefficient of linear thermal expansion;

is the modulus of elasticity;

is the volume expansion;

is a component of the strain tensor;

is the Kronecker delta;

is the cylinder radius;

are dimensionless coordinates;

is the relative half-length of the heating segment;

is the relative heat-transfer coefficient;

is the Biot number;

are modified Bessel functions of n-th order and their derivatives with respect to
the argument.
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